Rabu, 25 Februari 2009

NURBS

NURBS

NURBS stands for Non-Uniform Rational B-Spline. NURBS adalah Non-Uniform Rational B-Spline. It means NURBS uses rational Bézier curves and an non-uniform explicitly given knot vector. Ini berarti menggunakan NURBS Curves Bézier rasional dan non-seragam yang diberikan secara eksplisit simpul vector. Therefore, degree, control points, weights, and knot vector is needed to specify a NURBS curve. Oleh karena itu, derajat, titik kontrol, bobot, dan simpul vector diperlukan untuk menentukan NURBS curve.
Curves, surfaces, volumes... Curves, permukaan, volume ...

So far, we were talking about curves - one-dimensional formations. Sejauh ini, kami berbicara tentang Curves - satu-dimensi yang membahana. The principles can be applied to higher-dimensional objects like surfaces or volumes. Surfaces are used when creating 3D objects, for example landscape while volumes can be used to define a non-linear transformation. Prinsip-prinsip yang dapat diterapkan ke dimensi yang lebih tinggi seperti permukaan benda atau volume. Permukaan digunakan saat membuat objek 3D, misalnya lansekap sementara volume dapat digunakan untuk menentukan transformasi non-linear.
Examples of NURBS curves Contoh NURBS Curves

Following screenshots demonstrate different uses of NURBS in 3D graphics. Berikut screenshot menunjukkan berbeda yang menggunakan grafis 3D dalam NURBS.

Permukaan dibuat oleh perguliran NURBS curve sekitar poros Y
Surfaces or revolution can roughly approximate relatively large amount of different shapes. Permukaan atau revolusi dapat kira-kira perkiraan jumlah relatif besar dari berbagai bentuk.


Permukaan yang dibuat oleh satu sweeping curve lain sepanjang
Surface was created by moving a 2D NURBS curve along a path defined by another 3D NURBS curve. Permukaan telah dibuat oleh memindahkan 2D NURBS melengkung di sepanjang jalan yang ditetapkan oleh lain 3D NURBS curve.

The left image demonstrates a surface created by revolving a 2D NURBS curve around Y axis. Sebelah kiri menunjukkan gambar yang dibuat oleh permukaan bergulir yang 2D NURBS curve sekitar Y axis. The curve itself consists of 3 pieces (knot vector: 0, 0.2, 0.6, 0.6, 0.6, 1). Join between the two upper pieces is smooth, because the multiplicity of knot 0.2 is 1 and curve degree is 3. Curve itu sendiri yang terdiri dari 3 buah (simpul vector: 0, 0,2, 0,6, 0,6, 0,6, 1). Gabung antara dua buah atas adalah lancar, karena jumlah besar dari simpul 1 adalah 0,2 dan derajat curve adalah 3. On the other hand, knot 0.6 with multiplicity 3 causes a sharp edge. Di sisi lain, dengan simpul 0,6 keserbaragaman 3 penyebab yang tajam tajam.

The right image shows a surface created by sweeping a 2D curve along a 3D trajectory. Sebelah kanan menampilkan gambar permukaan yang dibuat oleh sweeping 2D a 3D curve sepanjang lintasan.

Sederhana 3. Gelar NURBS permukaan
NURBS surfaces need relatively large amoutn of control points, which makes them hard to control. NURBS permukaan harus relatif besar amoutn dari titik kontrol, yang membuat mereka sukar untuk mengendalikan.


J NURBS volume mendefinisikan sebuah transformasi nonlinear
The middle part of the text is magnified and the text is bent using a 2nd degree NURBS volume. Tengah bagian dari teks dan teks magnified adalah bakat menggunakan 2. Gelar NURBS volume.

Left image shows a NURBS surface and its control points. Kiri gambar menunjukkan NURBS permukaan dan titik kontrol. NURBS surfaces are used rather rarely in their pure form because the number of control points is usually large (4x4 in our simple case) and the surface becomes hard to control. NURBS permukaan agak jarang digunakan dalam bentuk murni karena jumlah titik kontrol biasanya besar (4x4 dalam kasus sederhana) dan permukaan menjadi sulit untuk mengendalikan.

Right image shows a 3D text that was transformed using a Bézier (or NURBS) volume of degree 2. Kanan menampilkan gambar 3D teks yang diwujudkan dengan menggunakan Bézier (atau NURBS) volume 2 derajat. The text is bent and its central part is larger - that effect was caused by the non-linear transformation defined by the NURBS volume (note the control points in the center of the model). Teks adalah bakat dan pusat adalah bagian yang lebih besar - yang merupakan efek yang disebabkan oleh non-linear transformasi ditentukan oleh NURBS volume (perhatikan titik kontrol di bagian tengah model).
Operations with NURBS Operasi dengan NURBS

When working with NURBS in their pure form, there is one very useful operation: inserting new knot . Ketika bekerja dengan NURBS dalam bentuk murni, ada satu operasi sangat berguna: memasukkan simpul baru. A knot can be inserted into a NURBS curve without changing the shape of the curve. J simpul dapat dimasukkan ke dalam NURBS melengkung tanpa mengubah bentuk melengkung. The desired side effect of this operation is an additional control point that provides finer control of the related region of the NURBS curve or surface. Efek samping yang dikehendaki dari operasi ini adalah titik kontrol tambahan yang menyediakan halus kontrol yang terkait dengan wilayah NURBS curve atau permukaan.

There are other operations with NURBS, like elevating degree, removing knots, or computing control point positions from points laying on a curve, but they do not reach the usefulness of knot insertion. Ada lainnya dengan NURBS, seperti elevating derajat, menghapus knot, atau komputasi titik kontrol poin dari posisi peletakan yang melengkung, tetapi mereka tidak mencapai manfaat simpul insersi.

Tidak ada komentar:

Posting Komentar

kalau bisa tolong perbaiki blog saya yach!!!!!!!
thanks